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Abstract. Aero-optical beam control relies on the development of low-latency forecasting tech-
niques to quickly predict wavefronts aberrated by the turbulent boundary layer around an air-
borne optical system, and its study applies to a multidomain need from astronomy to microscopy
for high-fidelity laser propagation. We leverage the forecasting capabilities of the dynamic mode
decomposition (DMD) — an equation-free, data-driven method for identifying coherent flow
structures and their associated spatiotemporal dynamics — to estimate future state wavefront
phase aberrations to feed into an adaptive optic control loop. We specifically leverage the
optimized DMD (opt-DMD) algorithm on a subset of the Airborne Aero-Optics Laboratory-
Transonic experimental dataset, characterizing aberrated wavefront dynamics for 23 beam
propagation directions via the spatiotemporal decomposition underlying DMD. Critically, we
show that opt-DMD produces an optimally debiased eigenvalue spectrum with imaginary eigen-
values, allowing for arbitrarily long forecasting to produce a robust future state prediction, while
exact DMD loses structural information due to modal decay rates. © 2022 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.61.1.013105]
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1 Introduction

Free-space communication, high-resolution imaging, and directed energy are sought after lasing
applications, all of which are desirable on aircraft. Achieving high-fidelity laser beam propa-
gation in the air requires mitigating the phase distortion of the outgoing wavefront. In atmos-
pheric and free-space laser propagation, such as in observational astronomy1 and satellite
quantum key distribution,2 and even in biological specimen microscopy,3 spatiotemporal varia-
tions of the index of refraction must be compensated for via adaptive optic (AO) control systems.
These AO systems typically use deformable mirrors to correct the outgoing beam by pre-
emptively deforming the wavefront to cancel out any subsequent perturbation. Developing
robust and responsive predictive controllers for AO systems is a highly desired enhancement
with application well beyond airborne optics.

For an airborne optical platform, the AO system must correct wavefront distortions resulting
from three primary sources: mechanical jitter of the platform, near-field effects where the tur-
bulent boundary layer (TBL) around the airborne platform rapidly alters the refractive index, and
atmospheric effects where inhomogeneities and turbulence alter the propagation medium.4,5 This
paper focuses on the near-field wavefront distortions that are referred to as aero-optical effects.
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The term aero-optics refers to the intersection of optical and aerodynamic phenomena, such
as the effects on the optical field from a high-speed turbulent flow, where air is forced around the
optical system, possibly resulting in flow separation and shock formation. Characterizing these
rapid wavefront aberrations is the goal of this study, using experimental data from the Airborne
Aero-Optics Laboratory-Transonic (AAOL-T).6 As shown in Fig. 1, the AAOL-T consists of
a pair of Falcon 10 aircraft measuring in-flight laser transmission. The aero-optic effects that
determine wavefront deformation are dependent on such factors as the laser platform shape and
aircraft geometry, the speed of the craft, the Reynolds number, and the direction of beam propa-
gation, which will be further discussed in Sec. 2.

The aerodynamic environment of airborne laser platforms motivates high-fidelity computa-
tional fluid dynamics models and experimental techniques in the study of aero-optics effects.
The high-speed, high Reynolds number compressible flows around airborne platforms can con-
tain TBLs, shear layers, and wakes, as well as shock waves in the case of transonic and super-
sonic flows.4,7 As a laser beam propagates through this turbulent flow surrounding the aperture,
refractive index fluctuations cause phase aberrations, and the resulting distortions of the optical
field are referred to as aero-optical effects.8

The index of refraction, n, is directly linked to air density fluctuations by

EQ-TARGET;temp:intralink-;e001;116;371nðrÞ ¼ 1þ KGDðλ0ÞρðrÞ; (1)

where KGD is the wavelength-dependent Gladstone–Dale factor, λ0 is the laser wavelength, and
ρðrÞ is the air density as a function of the spatial variable r.7

Characterizing propagating beam wavefront dynamics in the TBL is critical to correcting the
outgoing phase profile of the beam. From an applied standpoint, despite the relatively short,
centimeter scale, distance traveled in the TBL, the beam quality is immediately and often heavily
degraded within this region.9 A typical method to quantify the aero-optic wavefront aberrations
from a given refractive index field is by calculating optical path difference (OPD). OPD is com-
puted by first calculating the optical path length (OPL), which is proportional to the travel time
for corresponding rays. OPL is often computed as the integral of the index of refraction along the
propagation direction

EQ-TARGET;temp:intralink-;e002;116;220OPLðx; y; tÞ ¼
Z

z1

0

nðx; y; z; tÞdz: (2)

Subtracting the mean OPL over the spatial coordinates of the aperture produces the OPD

EQ-TARGET;temp:intralink-;e003;116;163OPDðx; y; tÞ ¼ OPLðx; y; tÞ − hOPLðx; y; tÞi: (3)

We have let z in Eq. (2) be the optical axis of the beam with x and y coordinates covering the
aperture, as shown in Fig. 2. Assuming the dominant contribution to the OPD occurs within the
TBL over short transmission distances, we may let the upper bound of integration, z1, match
the extent of the TBL. The root mean square of OPD across each dataset provides a metric to
assess the severity of wavefront distortions for the given experiment. To compare OPD across
experiments, we then normalize it as a dimensionless quantity, assigning

Fig. 1 AAOL-T aircraft with hemispherical laser turret. The turret geometry produces a turbulent
flow field in the few centimeters surrounding the sensors. Because the flow dynamics may not be
accounted for with on-board sensors across applications, their effects must be predictively con-
trolled to properly produce high-fidelity, coherent transmission of the electric field.
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EQ-TARGET;temp:intralink-;e004;116;434OPD←
OPD

M2Dρ∕ρ0
; (4)

whereM is the Mach number as a ratio of the speed of sound, D is the turret diameter, as shown
in Fig. 2, and ρ∕ρ0 is a ratio of in-flight air density to sea-level air density. For the AAOL-T data,
we analyze a subset such that each trial is taken at M ¼ 0.6 and ρ ¼ 0.812 kg∕m3. The sea
level air density is set to the standard ρ0 ¼ 1.225 kg∕m3, and the AAOL-T turret diameter is
D ¼ 0.3048 m. To characterize each trial in our dataset, we compute the root mean square,
OPDrms. This scaling allows extrapolation across various turret diameters and altitudes, since
the same spatial wavefront characteristics are retained for subsonic flow (M⪅0.6) in general and
for transonic (M ⪆ 0.6) and supersonic (M > 1) flow as long as Mach number is matched.6

When referring to OPD and OPDrms in figures and elsewhere in this paper, we imply the nor-
malized formulation in Eq. (4).

The analysis of aero-optical wavefront reconstruction leverages time-series measurements
collected through the TBL. Here, we highlight the measurement and sensor technologies used
for characterizing aero-optic interactions. We describe the underlying mathematical architecture
that leverages these measurements to develop dynamic models for wavefront reconstruction.

2 AAOL-T Experimental Data

The AAOL-Twas run by researchers at the University of Notre Dame to obtain live aero-optical
data in flight. A 532-nm source beam propagates from a hemispherical laser turret of diameter
0.3048 m mounted on a Falcon 10 aircraft, as shown in Fig. 1. The beam overfills the pupil
aperture on the receiver laboratory aircraft. A Shack–Hartmann wavefront sensor (SHWFS),
shown in Fig. 4(a) and described in Sec. 3, is used to capture wavefront phase aberrations
between the source and destination beams.

The AAOL-T dataset involves measurements up to Mach 0.8 taken at a sampling rate of
25 kHz. Shock formation on the hemispherical turret is observed at transonic Mach numbers.11

The distance between source and receiver aircraft is ∼50 m. The beam direction is recorded
in terms of its azimuth and elevation angles, as shown in Fig. 2, with respect to the cylindrical

Fig. 2 Detail of the turret geometry. The aperture (green disc with local coordinate system
x − y − z) images the aberrated wavefronts. Wavefront distortion is highly dependent on beam
direction, parametrized by α and β, the look-back angle and inclination angle, respectively.
These two parameters are mapped from the azimuth and elevation angles, Az and El, of the cylin-
drical base using the transformation in Eq. (5). The red dotted line indicates the beginnings of
the flow separation region for α > π∕2 and turbulent coherent structure formation.
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base of the hemispherical turret. It is useful to reparametrize the beam direction in terms of
a “look-back” angle and inclination angle, α and β, respectively, where

EQ-TARGET;temp:intralink-;e005;116;473α ¼ cos−1½cosðAzÞ cosðElÞ�; (5)

EQ-TARGET;temp:intralink-;e006;116;429β ¼ tan−1
�
tanðElÞ
sinðAzÞ

�
: (6)

A look-back angle, α, of zero is a beam propagating in the forward direction of the aircraft,
while an angle of 180 deg would designate propagation toward the rear, through the outgoing
turbulent wake. An inclination angle, β, of zero describes a beam facing the earth, while 180 deg
would be skyward. Figure 3(a) measures the effects of α and β onOPDrms for all 23 data sets. For
backward looking angles α > 90 deg, an increasing OPD indicates a heightening level of aber-
rations in the wavefront. With Fig. 3(b), we can visualize the effects of this look-back angle when
also considering β. The dark red region indicates angles that lie where horn vortices exist;
OPDrms tends to be greatest for these data points.

In-flight measurements from the AAOL-T experiment, the aircraft, and hemispherical laser
turret with conformal window, which are shown in Figs. 1 and 2, have contributed to a database
of aero-optic disturbance measurements. Atmospheric aberrations are often characterized by
Zernike modes,12 an orthogonal sequence of polynomials that span the unit disk and possess
odd or even radial symmetries. Zernike modes offer interpretability to optical dynamics and
can yield insights where radially symmetric aberrations are concerned. Yet this is often not the
case for aero-optical disturbances in the TBL, which are prone to quickly varying nonlinearities
in the index of refraction at transonic flow speeds.13 An analysis of the temporal phase structure
function and other statistics of AAOL-T wavefront data was performed by Brennan and Wittich
in 2013.14 Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD)
modes have been used to provide a spatiotemporal characterization of the flow dynamics.15

Predictive control methods for aero-optics have been analyzed on these data as well.16,17

3 Sensors and Data Acquisition

As shown in Fig. 4(a), a SHWFS is used to capture wavefront phase aberrations in the AAOL-T
experiment.10 A lenslet array in the pupil plane and at a focal distance away from an optical
sensor focuses an incoming wavefront into subregions on the detector plane. Any deviations
from a planar wavefront manifest as displacements, Δxi and Δyi, from the optical axis in the
ith subregion. The wavefront phase can be reconstructed by a least-squares fit of the average

(a) (b)

Fig. 3 Beam propagation direction affects OPD, as shown in the AAOL-T data. (a) The effect of
look-back angle, α, on OPDrms with inclination angle, β, given by the color bar. OPD increases as
the turret direction α looks to the trailing edge of the flow field. (b) Look-back angle versus incli-
nation angle with OPDrms given by the color bar. The light red shaded region denotes look-back
angles α > 90 deg. Beam directions in this region may be in the flow separation region of the index
of refraction. The dark red shaded region denotes inclination angles 60 deg < β < 80 deg. This
coloring serves as a rough guide to where horn vortices interrupt the boundary layer flow, resulting
in greater OPD.
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intensity-weighted gradients across the subapertures.10 These gradients are proportional to the
centroid tilts, the displacement of the centroid of the focused rays. The difference between the
centroid tilts and the true gradients can alter SHWFS readings. This source of measurement error
cannot be analytically evaluated outside low Mach numbers where weak scintillation and Rytov
theory apply.18 A performant SHWFS typically requires the length of each subaperture to be less
than a fourth of the Fried coherence length for atmospheric turbulence.19

A three-dimensional (3D) representation of the SHWFS on the AAOL-T laser turret is shown
in Fig. 4(a). The incoming beam’s aberrated wavefront is focused from the gridded lenslet array
onto subregions on the detector plane, as shown by the larger green dots. The displacements, Δxi
and Δyi, of each focused sub-beam from the centroid of each subregion, shown by the smaller
black dot, is used to compute the local tilt of the incoming wavefront, from which the wavefront
may be reconstructed. With a planar, unaberrated incoming wavefront, the focused spots would
be in a perfect grid matching the lenslet array geometry. The central circular region in Fig. 4(b)
represents the secondary mirror obscuration of the optical system inside the turret, which
includes a telescope used to align the turret on one AAOL-T aircraft to the incoming beam from
the other and is not an explicit feature of a general SHWFS. Because of the 1-inch-diameter
obscuration,5 the unprocessed SHWFS data are taken as a set of points lying in an annulus.

Figure 4(b) shows a single frame of unprocessed SHWFS data from the AAOL-T platform
used in this study. The data were acquired using a v1610 Vision Research Phantom camera at
30 kHz for a total of 21,504 frames captured per dataset. Figure 4(c) is an example of the proc-
essed data and the wavefront from the local tilts of the SHWFS that we use in our analysis. As
will be described in the upcoming sections, this study investigated 23 sets of data with varying
α and β angles, as shown in Fig. 2. Each ðα; βÞ pair defines a beam direction.

4 Optimized Dynamic Mode Decomposition

DMD was an algorithm developed by Schmid20,21 in the fluid dynamics community to identify
spatiotemporal coherent structures from high-dimensional data. DMD is based on POD, which
utilizes the computationally efficient singular value decomposition (SVD) so that it scales well to
provide effective dimensionality reduction in high-dimensional systems. DMD provides a modal
decomposition where each mode consists of spatially correlated structures that have the same
linear behavior in time (e.g., oscillations at a given frequency with growth or decay). Thus, DMD
not only provides dimensionality reduction in terms of a reduced set of modes, but also provides
a model for how these modes evolve in time.

Several algorithms have been proposed for DMD, with the exact DMD framework developed
by Tu et al.22 being the simplest, least-squares regression to produce the decomposition. DMD is
inherently data-driven, and the first step is to collect a number of pairs of snapshots of the state
of a system as it evolves in time. These snapshot pairs may be denoted by fxðtkÞ; xðt 0kÞgmk¼1,

Fig. 4 (a) Geometry of the SHWFS10 on the AAOL-T laser turret with an incident aberrated wave-
front. The lenslet arrays project to the sensor array where the displacements from the sensor
centroids, measured by Δx i and Δy i , is used to compute the local tilts of the wavefront for
reconstruction. (b) Unprocessed SHWFS data showing intensities projected on the 32 × 32 sub-
apertures sensors from the AAOL-T. (c) Processed SHWFS data used in the DMD analysis.
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where t 0k ¼ tk þ Δt, and the timestep, Δt, must be sufficiently small to resolve the highest
frequencies in the dynamics. As before, a snapshot may be the state of a system, such as a
3D fluid velocity field sampled at a number of discretized locations that is reshaped into a
high-dimensional column vector. These snapshots are then arranged into two data matrices,
X and X 0,

EQ-TARGET;temp:intralink-;e007a;116;675X ¼
2
4 j j j
xðt1Þ xðt2Þ · · · xðtmÞ
j j j

3
5; (7a)

EQ-TARGET;temp:intralink-;e007b;116;607X 0 ¼
2
4 j j j
xðt 01Þ xðt 02Þ · · · xðt 0mÞ
j j j

3
5: (7b)

If we assume uniform sampling in time, we will adopt the notation xk ¼ xðkΔtÞ.
The DMD algorithm seeks the leading spectral decomposition (i.e., eigenvalues and eigen-

vectors) of the best-fit linear operator, A, that relates the two snapshot matrices in time by

EQ-TARGET;temp:intralink-;e008;116;535X 0 ≈ AX: (8)

The best-fit operator, A, then establishes a linear dynamical system that best advances snap-
shot measurements forward in time. If we assume uniform sampling in time, this becomes

EQ-TARGET;temp:intralink-;e009;116;482xkþ1 ≈ Axk: (9)

Mathematically, the best-fit operator A is defined as

EQ-TARGET;temp:intralink-;e010;116;439A ¼ argminAkX 0 − AXkF ¼ X 0X†; (10)

where k · kF is the Frobenius norm and † denotes the Moore–Penrose pseudoinverse. The matrix
A is an operator that advances the measurements in x forward in time. It is often helpful to
convert the eigenvalues of this discrete-time operator into continuous time, resulting in eigen-
values λ ¼ μþ iω.

Alternative and better approaches are available23–25 to the exact DMD algorithm. Bagheri26

first highlighted that DMD is particularly sensitive to the effects of noisy data, with systematic
biases introduced to the eigenvalue distribution.27–30 For example, when additive white noise is
present in the measurements of an n-dimensional system with m snapshots, the bias in exact
DMD will be the dominant component of DMD error whenever the signal-to-noise ratio exceedsffiffiffiffiffiffiffiffiffi

n∕m
p

, implying that the effects of noise cannot always be mitigated by increasing the number
of snapshots.29 As a result, a number of methods have been introduced to stabilize performance,
including total least-squares DMD,30 forward–backward DMD,29 variational DMD,31 subspace
DMD,32 time-delay embedded DMD,33 and robust DMD methods.25,34

However, the optimized DMD (opt-DMD) algorithm of Askham and Kutz,25 which uses a
variable projection method for nonlinear least squares, provides the best performance of any
algorithm currently available. This is not surprising given that it actually is constructed to both
generalize and optimally satisfy the DMD problem formulation. In opt-DMD, the data matrix,X,
may be reconstructed as

EQ-TARGET;temp:intralink-;e011;116;192X ≈

2
4 j j
ϕ1 · · · ϕr

j j

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Φ

2
4 b1

. .
.

br

3
5

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
diagðbÞ

2
4 eλ1t1 · · · eλ1tm

..

. . .
. ..

.

eλrt1 · · · eλrtm

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
TðλÞ

; (11)

where the i’th eigenmode, ϕi, has a corresponding mode amplitude bi and eigenvalue λi. The
opt-DMD algorithm directly solves the exponential time dynamics fitting problem

EQ-TARGET;temp:intralink-;e012;116;93min
λ;Φb

kX −ΦbTðλÞkF; (12)
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where modes and amplitudes are combined into Φb ¼ Φ diagðbÞ. This has been shown to pro-
vide a superior decomposition due to its ability to optimally suppress bias. Unlike exact DMD
and its variants, opt-DMD also computes an optimization contemporaneously across snapshots,
eliminating the need for evenly timed samples. The disadvantage of opt-DMD is that one must
solve a nonlinear, nonconvex optimization problem. This is both computationally more expen-
sive than exact DMD and the solution, by construction, only guarantees a local minimal to the
optimization. In practice, opt-DMD is a relatively lightweight algorithm that has demonstrated
itself to be numerically performant,25 relegating exact DMD and its variants like fbDMD to
scenarios where low-precision is acceptable and low computational complexity is paramount.

5 Results and Analysis

Figures 5–7 show the result of an opt-DMD analysis for a total of nine different turret angles
ðα; βÞ: (95 deg, 83 deg), (127 deg, 81 deg), and (153 deg, 83 deg) in Fig. 5; (88 deg, 65 deg),
(119 deg,70 deg), and (141 deg, 65 deg) in Fig. 6; and (82 deg, 50 deg), (94 deg, 52 deg), and
(108 deg, 53 deg) in Fig. 7. These beam directions parameters were chosen to cover a variety of
points along the AAOL-T’s hemispherical turret. Grouping these trials by inclination angle, β,
allows us to better compare look-back angles, α, as shown in the figures.

Each row of Figs. 5–7 represents an individual ðα; βÞ data set’s opt-DMD analysis, showing
the dominant eight eigenvalues and the corresponding modes 1, 3, 5, and 7 from which the even
numbered modes may be inferred as complex conjugates. Note in all cases that the eigenvalue
spectrum is completely debiased, lying along the imaginary axis. This is the critical takeaway of
opt-DMD: with nearly perfect imaginary eigenvalues, the presented modes and their exponential
time dynamics experience little time decay, allowing for arbitrarily long-lasting forecasts.

To compare with the precision of opt-DMD, we consider in Fig. 8 an exact DMD analysis of
the ðα ¼ 153 deg; β ¼ 83 degÞ dataset. As shown by the turret geometry in Fig. 2, this angle is
roughly along the mid-line of the turret with a high look-back angle, pointing into the turbulent
region prone to aero-optical effects but just outside regions with prominent horn vortices.
The singular value spectrum and corresponding cumulative energy plots in Fig. 8(a) suggest

Fig. 5 Experiments with β ≈ 80 deg for various α, all in degrees. Each row depicts the truncated
eigenvalue spectrum and first eight modes of the OPD for beam direction ðα; βÞ as indicated above
the eigenvalue plot. As shown across all trials, opt-DMD determines completely imaginary eigen-
values, as shown on the leftmost column of plots. These long-lasted modes enable long-time pre-
diction. Mode labels are colored to match the associated eigenvalue in the eigenvalue plot. Note
that even modes are not displayed but are the complex conjugates of the odd modes.
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an optimal rank truncation r ¼ k ¼ 296,35 which is an overwhelming amount of modal detail to
retain.

Figure 8(b) shows the continuous-time eigenvalue spectrum of the system at the given rank
truncation. The parabolic envelope μðωÞ ¼ −0.11ω2 − 0.09 of the continuous-time eigenvalues
ought to be compared with the spectrum of opt-DMD in Figs. 5–7, whose eigenvalues lie on
the imaginary axis. The deformed envelope shown in Fig. 8(b) is consistent with weak noise on
self-sustaining oscillating flow fields.26 While truncating the exact DMD analysis at a lower
rank may produce modes closer to the imaginary axis, a parabolic envelope remains and the
performance of opt-DMD remains superior by construction.

Fig. 7 Experiments with β ≈ 50 deg for various α. Compare with Figs. 5 and 6. Each row depicts
the truncated eigenvalue spectrum and first eight modes of the OPD for beam direction ðα; βÞ as
indicated above the eigenvalue plot.

Fig. 6 Experiments with β ≈ 65 deg for various α. Compare with Figs. 5 and 7. Each row depicts
the truncated eigenvalue spectrum and first eight modes of the OPD for beam direction ðα; βÞ as
indicated above the eigenvalue plot.
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Computing the modal half-life gives us a window into the shortcomings of exact DMD.
The mean half-life is found to be

EQ-TARGET;temp:intralink-;e013;116;442ht1∕2i ¼
1

r

Xr

j¼1

− logð2ÞΔt
μj

¼ 104 μs; (13)

and the amplitude-weighted mean half-life is

EQ-TARGET;temp:intralink-;e014;116;380htb1∕2i ¼
1P

r
i¼1 jbij

Xr

j¼1

−jbjj logð2ÞΔt
μj

¼ 138 μs: (14)

The modal half-life indicates a window of opportunity for a predictor to interact with an AO
control loop. For the particular example in Fig. 8, the modal half-lives individually spanned a
range from 50 to 500 μs. When examining all 23 trials for various ðα; βÞ, we discovered the mean
half-lives were consistently on the order of a 100 μs. With these decay timescales, pertinent
coherent turbulent structures become treated as transient effects, diminishing the ability of
DMD to forecast the dominant spatiotemporal structures on a long horizon. Figure 8(c) char-
acterizes the power spectrum of the exact DMD modes. Note that many powerful modes have
lower than average half-lives, further compromising the ability of exact DMD to forecast tur-
bulent flow dynamics.

6 Conclusion

Data-driven methods are becoming increasingly important to model complex spatiotemporal
systems whose evolution dynamics are not well known or only characterized by time-series
measurements. In the case of aero-optic interactions, modeling the induced turbulent wake from
a turret is exceptionally challenging. Unless dynamics are characterized in an appropriate man-
ner, the wavefront aberrations cannot be corrected in the AO system. We proposed a data-driven
algorithmic architecture that aims to model the aero-optic interactions in an adaptive and real-
time manner. Specifically, we introduced the opt-DMD algorithm to produce an unbiased modal
analysis of the AAOL-T dataset, which captures the wavefront aberrations induced by a turbulent
flow around a turret. The imaginary-valued eigenspectrum of the opt-DMD operator permits
longer forecasting in an AO loop compared with an exact DMD algorithm. Exact DMD suffers

(a) (b) (c)

Fig. 8 Demonstration of bias in the exact DMD algorithm for a beam direction with α ¼ 153 deg,
β ¼ 83 deg. The bias produces a half-life decay for the forecast on the order of a 100 μs. (a) SVD
and cumulative energy of singular values. (b) Continuous-time eigenvalue spectrum. The orange
dashed parabola, which forms an envelope around the DMD eigenvalues, is characteristic of noisy
bias. In the opt-DMD spectra, this curve becomes a vertical line. The blue dash-dotted line rep-
resents a cutoff to the left of which exist modes whose half-life exceeds the mean half-life. Color
and size matches eigenvalues to corresponding points in the next figure, (c), and the power spec-
tral density’s vertical axis. (c) One-sided power spectrum of the DMD modes.
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from modal decay rates due to the real components introduced in the spectrum, whereas
opt-DMD modes display no decay rate and permit forecasting as long as the model remains
physically meaningful with respect to the environment. Indeed, traditional DMD algorithms
have forecasting horizons which decay on the order of hundreds of microseconds, whereas
opt-DMD by construction allows for forecasting on scales required for control algorithms for
AO corrections.

Further studies ought to assess the performance of opt-DMD on turret geometries beyond
hemispherical, as well as compare opt-DMD’s forecasting ability to existing aero-optical pre-
dictors that rely on time-invariant POD modes for dimensionality reduction or neural network
architectures.17 Importantly, opt-DMD’s minimal bias as well as its freedom in sampling variable
time steps make it a promising predictor for aero-optical phenomena.

Acknowledgments

S.L.B. acknowledges funding support from the Air Force Office of Scientific Research (AFOSR
FA9550-19-1-0386) and the Army Research Office (ARO W911NF-19-1-0045). Portions of
this manuscript were previously published in SPIE Proceedings.36 Approved for public release;
distribution is unlimited. Public Affairs release approval #AFRL-2021-3106.

References

1. R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys.
50, 305–351 (2012).

2. Y. Cao et al., “Long-distance free-space measurement-device-independent quantum key
distribution,” Phys. Rev. Lett. 125, 260503 (2020).

3. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light
Sci. Appl. 3, e165 (2014).

4. S. G. E. Jumper, “Physics and measurement of aero-optical effects: past and present,” Annu.
Rev. Fluid Mech. 49, 419–441 (2017).

5. N. De Lucca et al., “Effects of engine acoustic waves on optical environment around turrets
in-flight on AAOL-T,” Opt. Eng. 57, 064107 (2018).

6. E. J. Jumper et al., “Airborne Aero-Optics Laboratory—transonic (AAOL-T),” in 53rd AIAA
Aerosp. Sci. Meeting, American Institute of Aeronautics and Astronautics (2015).

7. M. Wang, A. Mani, and S. Gordeyev, “Physics and computation of aero-optics,” Annu. Rev.
Fluid Mech. 44, 299–321 (2012).

8. C. C. Wilcox et al., “Air Force Research Laboratory, Aero-Effects Laboratory optical
metrology system and performance,” Proc. SPIE 11490, 114900A (2020).

9. Z. Wang et al., “Proper orthogonal decomposition closure models for turbulent flows:
a numerical comparison,” Comput. Methods Appl. Mech. Eng. 237–240, 10–26 (2012).

10. R. V. Shack, “Production and use of a lecticular Hartmann screen,” J. Opt. Soc. Am. 61, 656
(1971).

11. S. Gordeyev and E. Jumper, “Fluid dynamics and aero-optics of turrets,” Prog. Aerosp. Sci.
46, 388–400 (2010).

12. W. J. Tango, “The circle polynomials of Zernike and their application in optics,” Appl. Phys.
13, 327–332 (1977).

13. J. W. Goodman, Introduction to Fourier Optics, W. H. Freeman, New York (2017).
14. T. J. Brennan and D. J. Wittich III, “Statistical analysis of Airborne Aero-Optical Laboratory

optical wavefront measurements,” Opt. Eng. 52, 071416 (2013).
15. D. J. Goorskey, R. Drye, and M. R. Whiteley, “Dynamic modal analysis of transonic

Airborne Aero-Optics Laboratory conformal window flight-test aero-optics,” Opt. Eng.
52, 071414 (2013).

16. D. J. Goorskey, J. Schmidt, and M. R. Whiteley, “Efficacy of predictive wavefront control
for compensating aero-optical aberrations,” Opt. Eng. 52, 071418 (2013).

17. W. R. Burns, E. J. Jumper, and S. Gordeyev, “A robust modification of a predictive adaptive-
optic control method for aero-optics,” in 47th AIAA Plasmadynamics and Lasers Conf.,
American Institute of Aeronautics and Astronautics (2016).

Sahba et al.: Dynamic mode decomposition for aero-optic wavefront characterization

Optical Engineering 013105-10 January 2022 • Vol. 61(1)

https://doi.org/10.1146/annurev-astro-081811-125447
https://doi.org/10.1103/PhysRevLett.125.260503
https://doi.org/10.1038/lsa.2014.46
https://doi.org/10.1038/lsa.2014.46
https://doi.org/10.1146/annurev-fluid-010816-060315
https://doi.org/10.1146/annurev-fluid-010816-060315
https://doi.org/10.1117/1.OE.57.6.064107
https://doi.org/10.1146/annurev-fluid-120710-101152
https://doi.org/10.1146/annurev-fluid-120710-101152
https://doi.org/10.1117/12.2568789
https://doi.org/10.1016/j.cma.2012.04.015
https://doi.org/10.1016/j.paerosci.2010.06.001
https://doi.org/10.1007/BF00882606
https://doi.org/10.1117/1.OE.52.7.071416
https://doi.org/10.1117/1.OE.52.7.071414
https://doi.org/10.1117/1.OE.52.7.071418


18. C. Robert et al., “Scintillation and phase anisoplanatism in Shack–Hartmann wavefront
sensing,” J. Opt. Soc. Am. A 23(3), 613–624 (2006).

19. J. D. Barchers, D. L. Fried, and D. J. Link, “Evaluation of the performance of Hartmann
sensors in strong scintillation,” Appl. Opt. 41, 1012–1021 (2002).

20. P. J. Schmid and J. Sesterhenn, “Dynamic mode decomposition of numerical and experi-
mental data,” in 61st Annu. Meet. APS Division of Fluid Dyn., American Physical Society
(2008).

21. P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” J. Fluid
Mech. 656, 5–28 (2010).

22. J. H. Tu et al., “On dynamic mode decomposition: theory and applications,” J. Comput. Dyn.
1, 391–421 (2014).

23. K. K. Chen, J. H. Tu, and C. W. Rowley, “Variants of dynamic mode decomposition: boun-
dary condition, Koopman, and Fourier analyses,” J. Nonlinear Sci. 22, 887–915 (2012).
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